EXERCISE 2.1 [PAGES 30 - 31]

Exercise 2.1 | Q 1.1 | Page 30

Check if the following relation is function.

SOLUTION

Yes Reason: Every element of set A has been assigned a unique element in set B.

Exercise 2.1 | Q 1.2 | Page 31

Check if the following relation is function.

No. Reason: An element of set A has been assigned more than one element from set B.

Exercise 2.1 | Q 1.3 | Page 31

Check if the following relation is function.

SOLUTION

No. Reason: Not every element of set A has been assigned an image from set B.

Exercise 2.1 | Q 2.1 | Page 31

Which sets of ordered pairs represent functions from $A = \{1,2,3,4\}$ to $B = \{-1,0,1,2,3\}$? Justify $\{(1,0), (3,3), (2,-1), (4,1), (2,2)\}$

SOLUTION

 $\{(1, 0), (3, 3), (2, -1), (4, 1), (2, 2)\}$ does not represent a function. **Reason:** (2, -1) and (2, 2) show that element $2 \in A$ has been assigned two images – 1 and 2 from set B.

Exercise 2.1 | Q 2.2 | Page 31

Which sets of ordered pairs represent functions from $A = \{1,2,3,4\}$ to $B = \{-1,0,1,2,3\}$? Justify $\{(1,2), (2,-1), (3,1), (4,3)\}$

SOLUTION

 $\{(1, 2), (2, -1), (3, 1), (4, 3)\}$ represents a function. **Reason:** Every element of set A has a unique image in set B.

Exercise 2.1 | Q 2.3 | Page 31

Which set of ordered pair represent function from $A = \{1,2,3,4\}$ to $B = \{-1,0,1,2,3\}$? Justify. $\{(1,3), (4,1), (2,2)\}$

SOLUTION

{(1, 3), (4, 1), (2, 2)} does not represent a function. **Reason:** $3 \in A$ does not have an image in set B.

Exercise 2.1 | Q 2.4 | Page 31

Get More Learning Materials Here : 📕

Which set of ordered pair represent function from $A = \{1,2,3,4\}$ to $B = \{-1,0,1,2,3\}$? Justify $\{(1,1), (2,1), (3,1), (4,1)\}$

SOLUTION

 $\{(1, 1), (2, 1), (3, 1), (4, 1)\}$ represents a function **Reason:** Every element of set A has been assigned a unique image in set B.

Exercise 2.1 | Q 3.1 | Page 31 If $f(m) = m^2 - 3m + 1$, find f(0)

SOLUTION

 $f(m) = m^2 - 3m + 1$ $f(0) = 0^2 - 3(0) + 1 = 1$

Exercise 2.1 | Q 3.2 | Page 31 If f(m) = m² - 3m + 1, find f(-3)

SOLUTION

 $f(-3) = (-3)^2 - 3(-3) + 1$ = 9 + 9 + 1 = 19

Exercise 2.1 | Q 3.3 | Page 31

If f(m) = m² – 3m + 1, find
$$f\left(\frac{1}{2}\right)$$

SOLUTION

$$f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 = 3\left(\frac{1}{2}\right) + 1 = \frac{1}{4} = \frac{3}{2} + 1$$
$$= \frac{1-6+4}{4} = -\frac{1}{4}$$

.....

Exercise 2.1 | Q 3.4 | Page 31 If $f(m) = m^2 - 3m + 1$, find f(x + 1)

SOLUTION

 $f(x + 1) = (x + 1)^2 - 3(x + 1) + 1$ = x² + 2x + 1 - 3x - 3 + 1 = x² - x - 1

Exercise 2.1 | Q 3.5 | Page 31 If *f*(m) = m2 - 3m + 1, find *f*(-x)

SOLUTION

 $\begin{array}{l} f(-x) = (-x)^2 - 3 \ (-x) + 1 \\ = x^2 + 3x + 1 \end{array}$

Exercise 2.1 | Q 4.1 | Page 31

Find x, if g(x) = 0 where $g(x) = \frac{5x - 6}{7}$

SOLUTION

$$g(x) = \frac{5x - 6}{7}$$
$$g(x) = 0$$
$$\therefore \frac{5x - 6}{7} = 0$$
$$\therefore 5x - 6 = 0$$
$$\therefore x = \frac{6}{5}$$

Exercise 2.1 | Q 4.2 | Page 31 Find x, if g(x) = 0 where g (x) = $\frac{18 - 2x^2}{7}$

SOLUTION

$$g(x) = \frac{18 - 2x^2}{7}$$
$$g(x) = 0$$
$$\therefore \frac{18 - 2x^2}{7} = 0$$
$$\therefore 18 - 2x^2 = 0$$

$$\therefore x^2 = \frac{18}{2} = 9$$
$$\therefore x = \pm 3$$

Exercise 2.1 | Q 4.3 | Page 31 Find x, if g(x) = 0 where $g(x) = 6x^2 + x - 2$

SOLUTION

 $g(x) = 6x^{2} + x - 2$ g(x) = 0 $\therefore 6x^{2} + x - 2 = 0$ $\therefore 6x^{2} + 4x - 3x - 2 = 0$ $\therefore 2x(3x + 2) - 1(3x + 2) = 0$ $\therefore (2x - 1) (3x + 2) = 0$ $\therefore 2x - 1 = 0 \text{ or } 3x + 2 = 0$ $\therefore x = \frac{1}{2} \text{ or } x = -\frac{2}{3}$

Exercise 2.1 | Q 5 | Page 31 Find x, if f(x) = g(x) where $f(x) = x^4 + 2x^2$, g (x) = $11x^2$

SOLUTION

f(3)

 $f(x) = x^{4} + 2x^{2}, g(x) = 11x^{2}$ f(x) = g(x) $\therefore x^{4} + 2x^{2} = 11x^{2}$ $\therefore x^{4} - 9x^{2} = 0$ $\therefore x^{2} (x^{2} - 9) = 0$ $\therefore x = 0 \text{ or } x^{2} - 9 = 0$ $\therefore x = 0 \text{ or } x^{2} - 9 = 0$ $\therefore x = 0 \text{ or } x^{2} = 9$ $\therefore x = 0 \text{ or } x = \pm 3$ Exercise 2.1 | Q 6 | Page 31 If (x) ={x^{2} + 3, x \le 2, 5x + 7, x > 2, then find

f(2)

f(0)

SOLUTION

 $x^{2} + 3, x \le 2, 5x + 7, x > 2$ i. f(3) = 5(3) + 7 = 15 + 7 = 22 ii. f(2) = 2² + 3 = 4 + 3 = 7 iii. f(0) = 0² + 3 = 3 **Exercise 2.1 | Q 7 | Page 31** If $f(x) = \{4x - 2, x \le -35, -3 < x < 3, \}$

 x^2 , x ≥3 then find f(-4), f(-3),f(1), f(5)

SOLUTION

f(x) = 4x - 2, $x \le -35,$ -3 < x < 3, $x^{2},$ $x \ge 3$ i. f(-4) = 4(-4) - 2 = -16 - 2 = -18ii. f(-3) = 4(-3) - 2 = -12 - 2 = -14iii. f(1) = 5iv. $f(5) = 5^{2} = 25$ **Exercise 2.1 | Q 8.1 | Page 31**

If f(x) = 3x + 5, g(x) = 6x - 1, then find (f+g)(x)

SOLUTION

f(x) = 3x + 5, g(x) = 6x - 1(f+g) x = f(x) + g(x) = 3x + 5 + 6x - 1 = 9x + 4

Exercise 2.1 | Q 8.2 | Page 31 If f(x) = 3x + 5, g(x) = 6x - 1, then find (f - g) (2)

SOLUTION

(f - g)(2) = f(2) - g(2)

= [3 (2) + 5] - [6 (2) - 1]= 6 + 5 - 12 + 1= 0 Exercise 2.1 | Q 8.3 | Page 31

If f(x) = 3x + 5, g(x) = 6x - 1, then find (f g) (3)

SOLUTION

(f g) (3) = f(3) g (3)= [3 (3) + 5] [6 (3) - 1] = (14) (17) = 238 Exercise 2.1 | Q 8.4 | Page 31

If f(x) = 3x + 5, g(x) = 6x - 1, then find $\left(\frac{f}{g}\right)(x)$ and its domain

SOLUTION

$$\left(\frac{f}{g}\right)x = \frac{f(x)}{g(x)} = \frac{3x+5}{6x-1}, x \neq \frac{1}{6}$$

Domain = R - $\left\{\frac{1}{6}\right\}$

Exercise 2.1 | Q 9.1 | Page 31 If $f(x) = 2x^2 + 3$, g (x) = 5x - 2, then find $f \circ g$

SOLUTION

 $f(x) = 2x^{2} + 3, g(x) = 5x - 2$ (fog) (x) = f(g(x)) = f(5x - 2) = 2(5x - 2)^{2} + 3 = 2(25x^{2} - 20x + 4) + 3 = 50x^{2} - 40x + 8 + 3 = 50x^{2} - 40x + 11

Exercise 2.1 | Q 9.2 | Page 31 If $f(x) = 2x^2 + 3$, g(x) = 5x - 2, then find g of

SOLUTION

 $(g \text{ of})(x) = g(f(x)) = g(2x^2 + 3)$

Get More Learning Materials Here :

 $= 5(2x^{2} + 3) - 2$ $= 10 x^{2} + 15 - 2$ $= 10 x^{2} + 13$

NOTES

 $(gof) (x) = g(f (x)) = g(2x^{2} + 3)$ $= 5(2x^{2} + 3) - 2$ = 10 x 2 + 15 - 2 $= 10 x^{2} + 13$

Exercise 2.1 | Q 9.3 | Page 31 If $f(x) = 2x^2 + 3$, g(x) = 5x - 2, then find fof

SOLUTION

 $(fof) (x) = f(f(x)) = f(2x^{2} + 3)$ $= 2(2x^{2} + 3)^{2} + 3$ $= 2 (4x^{4} + 12x^{2} + 9) + 3$ $= 8x^{4} + 24x^{2} + 18 + 3$ $= 8x^{4} + 24x^{2} + 21$

Exercise 2.1 | Q 9.4 | Page 31 If $f(x) = 2x^2 + 3$, g(x) = 5x - 2, then find gog

SOLUTION

(gog) (x) = g (g (x)) = g (5x - 2)= 5(5x - 2) - 2 = 25x - 10 - 2 = 25x - 12 MISCELLANEOUS EXERCISE 2 [PAGE 32]

Miscellaneous Exercise 2 | Q 1.1 | Page 32

Which of the following relations are functions? If it is a function determine its domain and range.

 $\{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$

SOLUTION

 $\{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$

Get More Learning Materials Here : 📕

Every element of set A has been assigned a unique element in set B.

: Given relation is a function. Domain = $\{2, 4, 6, 8, 10, 12, 14\}$, Range = $\{1, 2, 3, 4, 5, 6, 7\}$

Miscellaneous Exercise 2 | Q 1.2 | Page 32

Which of the following relations are functions? If it is a function determine its domain and range.

 $\{(0, 0), (1, 1), (1, -1), (4, 2), (4, -2), (9, 3), (9, -3), (16, 4), (16, -4)\}$

SOLUTION

 $\{(0, 0), (1, 1), (1, -1), (4, 2), (4, -2), (9, 3), (9, -3), (16, 4), (16, -4)\}$

 \therefore (1, 1), (1, -1) \in the relation

 \therefore Given relation is not a function. As the element 1 of the domain has not been assigned a unique element of co-domain.

Miscellaneous Exercise 2 | Q 1.3 | Page 32

Which of the following relations are functions? If it is a function determine its domain and range.

 $\{(1, 1), (3, 1), (5, 2)\}$

SOLUTION

 $\{(1, 1), (3, 1), (5, 2)\}$

Every element of set A has been assigned a unique element in set B.

 \therefore Given relation is a function.

Domain = $\{1, 3, 5\}$, Range = $\{1, 2\}$

Miscellaneous Exercise 2 | Q 2 | Page 32

A function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{3\frac{x}{5} + 2}{x \in \mathbb{R}}$. Show that f is one-one and onto. Hence find f⁻¹

SOLUTION

f: R
$$\rightarrow$$
 R defined by f(x) = $\frac{3x}{5}$ +2

First we have to prove that f is one-one function for that we have to prove if $f(x_1) = f(x_2)$ then $x_1 = x_2$

Here f(x) = $\frac{3x}{5} + 2$ Let f(x1) = f(x2) $\therefore \frac{3x_1}{5} + 2 = \frac{3x_2}{5} + 2$ $\therefore \frac{3x_1}{5} = \frac{3x_2}{5}$ $\therefore x_1 = x_2$

 \therefore f is a one-one function. Now, we have to prove that f is an onto function. Let y \in R be such that y = f(x)

$$\therefore y = \frac{3x}{5} + 2$$
$$\therefore y - 2 = \frac{3x}{5}$$
$$\therefore x = \frac{5(y-2)}{3} \in R$$

 $\frac{5(y-2)}{3}$

🕀 www.studentbro.in

 \therefore for any y \in co-domain R, there exist an element x = domain R such that f(x) = y

CLICK HERE

 \therefore f is an onto function.

: f is one-one onto function.

∴ f⁻¹ exists

∴ f⁻¹(y) =
$$\frac{5(y-2)}{3}$$

∴ f⁻¹(x) = $\frac{5(x-2)}{3}$

Miscellaneous Exercise 2 | Q 3 | Page 32

A function f is defined as follows f(x) = 4x + 5, for $-4 \le x < 0$. Find the values of f(-1), f(-2), f(0), if they exist.

SOLUTION

 $f(x) = 4x + 5, -4 \le x < 0$ f(-1) = 4(-1) + 5 = -4 + 5 = 1 f(-2) = 4(-2) + 5 = -8 + 5 = -3 x = 0 \notin domain of f

 \therefore f(0) does not exist.

Miscellaneous Exercise 2 | Q 4 | Page 32

A function f is defined as follows: f(x) = 5 - x for $0 \le x \le 4$ Find the value of x such that f(x) = 3

SOLUTION

f(x) = 5 - xf(x) = 3 $\therefore 5 - x = 3$

 $\therefore x = 5 - 3 = 2$

Miscellaneous Exercise 2 | Q 5 | Page 32 If $f(x) = 3x^2 - 5x + 7$ find f(x - 1).

SOLUTION

$$f(x) = 3x^{2} - 5x + 7$$

$$\therefore f(x - 1) = 3(x - 1)^{2} - 5(x - 1) + 7$$

$$= 3(x^{2} - 2x + 1) - 5(x - 1) + 7$$

$$= 3x^{2} - 6x + 3 - 5x + 5 + 7$$

$$= 3x^{2} - 11x + 15$$

Miscellaneous Exercise 2 | Q 6 | Page 32

If f(x) = 3x + a and f(1) = 7 find a and f(4).

SOLUTION

f(x) = 3x + a f(1) = 7 $\therefore 3(1) + a = 7$ $\therefore a = 7 - 3 = 4$ $\therefore f(x) = 3x + 4$ $\therefore f(4) = 3(4) + 4 = 12 + 4 = 16$

Miscellaneous Exercise 2 | Q 7 | Page 32 If $f(x) = ax^2 + bx + 2$ and f(1) = 3, f(4) = 42. find a and b.

SOLUTION

f(x) = ax² + bx + 2 f(1) = 3 ∴ a(1)² + b(1) + 2 = 3 ∴ a + b = 1 ...(i) ∴ f(4) = 42 ∴ a(4)2 + b(4) + 2 = 42 ∴ 16a + 4b = 40 Dividing by 4, we get 4a + b = 10 ...(ii) Solving (i) and (ii), we get a = 3, b = -2 Miscellaneous Exercise 2 | Q 8 | Page 32 If f(x) = $\frac{2x - 1}{5x - 2}$, $x \neq \frac{2}{5}$ Verify whether (fof) (x) = x

SOLUTION

(fof) (x) = f(f(x))
=
$$f\left(\frac{2x-1}{5x-2}\right)$$

= $\frac{2\frac{2x-1}{5x-2} - 1}{5\frac{2x-1}{5x-2} - 2}$
= $\frac{4x-2-5x+2}{10x-5-10x+4} = \frac{-x}{-1} = x$

Miscellaneous Exercise 2 | Q 9 | Page 32 If $f(x) = \frac{x+3}{4x-5}$, $g(x) = \frac{3+5x}{4x-1}$ then verify that (fog) (x) = x.

SOLUTION

$$f(x) = \frac{x+3}{4x-5}, g(x) = \frac{3+5x}{4x-1}$$

$$(fog)(x) = f(g(x))$$

$$= f\left(\frac{3+5x}{4x-1}\right)$$

$$= \frac{\frac{3+5x}{4x-1}+3}{\left(4\frac{3+5x}{4x-1}\right)-5}$$

$$= \frac{3+5x+12x-3}{12+20x-20x+5} = \frac{17x}{17} = x$$

Get More Learning Materials Here :

